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The square-lattice Ising model with first and second 
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School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia 

Received 11 September 1980, in final form 26 November 1980 

Abstract. The critical behaviour of the square-lattice Ising model, with nearest and 
next-nearest neighbour interactions of either sign, has been investigated by means of 
high-temperature series. The location of the critical lines in the coupling constant plane has 
been accurately determined. Along the critical line which corresponds to transitions to the 
layered or superantiferromagnetic state a breakdown of universality is observed and explicit 
numerical estimates obtained for the exponent of the ordering susceptibility. 

1. Introduction 

There has recently been an increase of interest in two-dimensional king systems with 
interactions beyond first neighbours. This is partly due to the discovery and study of 
real 2D Ising systems, notably gases adsorbed on a crystalline surface, but has also been 
stimulated by theoretical predictions of more interesting and more complex critical 
behaviour than had been previously expected. 

This paper is devoted to a study of the square-lattice king model with first and 
second neighbour interactions, described by the usual Hamiltonian 

2 = -J, c aiaj -J* ais, 
(ij ) Eli 1 

where the summations are over nearest neighbour pairs and next-nearest neighbour 
pairs respectively, andJ ,  and J 2  are exchange constants which may be either positive or 
negative. It is usually convenient to incorporate the temperature into the definition of 
the coupling constants, and to write 

As is well known, the inclusion of second neighbour interactions makes the model 
unsolvable by existing techniques. Although no exact results are known, various 
approximate methods have been used to study the model and our overall knowledge of 
its properties is good. One of the successful approximate techniques for studying the 
critical behaviour of cooperative lattice systems is the technique of exact series 
expansions, and it is this technique which has been used in the present work. However, 
for completeness, and to motivate the subsequent discussions, we will summarise what 
is known about the system and give a brief review of previous work by other authors. 

0305-4470/81/051159+ l O $ O l . S O  @ 1981 The Institute of Physics 1159 



1160 J Oitmau 

The Hamiltonian (1) has three possible types of ground state, depending on the 
values of the interaction parameters J , ,  J2 .  These are the ferromagnetic (F), antifer- 
romagnetic (AF) and ‘superantiferromagnetic’ (SAF) states, shown in figure l(a). The 
SAF state is of special interest because of its extra two-fold degeneracy and two- 
component (n = 2) order parameter. For the special case J 2  = -$J1l the SAF ground 
state is degenerate with either the F or AF states, and an order parameter with n = 3 is 
appropriate. We shall discuss this in more detail below. 

J z  t 

r - - - -  i 
I +  + + I  

1 -  - - 1  S A F  

Kz t 

R = J,iJ, 

( C )  

Figure 1. ( a )  Possible ordered states; ( b )  qualitative phase diagram in the (Kl ,  K,) plane; 
(c)  variation of ferromagnetic critical temperature, for the square-lattice king model with 
nearest and next-nearest neighbour interactions. 

The zero-field free energy is given by 

F ( K , ,  K 2 )  = N f ( K l ,  K 2 )  = -(l/p) In Tr(epPx). (3 )  

The function f ( K l ,  K 2 ) ,  which is an even function of K1, will exhibit singularities along 
critical lines in the (K1, K 2 )  plane, the forms of which are depicted in figure l(b).  The 
upper two lines, which represent transitions from the high-temperature paramagnetic 
phase (P) to either the F or AF phases, intersect the K 2  = 0 axis at K 1  = *KO (where 
K O  = 4 In( 1 + 42)  is the Onsager value), and come together in a cusp at the point K1 = 0, 
K 2  = K O .  It is believed that along these lines the system exhibits conventional Ising 
critical behaviour. The lower line, which represents transitions from the P phase to the 
SAF phase, intersects the K1 = 0 axis at K 2  = -KO. There is evidence that along this line 
the system has non-universal exponents, a question which we return to in a later section. 
This same information is shown in a slightly different way in figure l(c),  where we plot 
the variation of critical temperature T,  as a function of the ratio of interactions 

This system has been studied by many authors. Various closed-form approxima- 
tions have been used (Fan and Wu 1969, Gibberd 1969, Burkhardt 1978). Early 

R = Jy’J1. 
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renormalisation-group calculations (Nauenberg and Nienhuis 1974, van Leeuwen 
19 7 5 ,  Nightingale 1977) have provided qualitative confirmation of the location and 
shape of the critical lines, and yielded the first suggestion of non-universal critical 
behaviour along the lower branch of figure l(b). More recent work by Swendsen and 
Krinsky (1979), using the Monte Carlo renormalisation-group method, has provided 
confirmation of the violation of universality along the SAF line and has yielded 
quantitative estimates of critical exponents along this line. Further confirmation of this 
result was obtained by Barber (1979) by means of a perturbation expansion about the 
point K ,  = 0, K 2  = -KO. The possibility of unusual behaviour in an equivalent model 
had also been predicted by Jiingling (1976). A more general discussion, emphasising 
the role of symmetry and dimensionality of the order parameter, has been given by 
Krinsky and Mukamel (1 977). 

The model has also been investigated by standard Monte Carlo techniques and by 
series expansions. The most recent Monte Carlo work (Landau 1980, Binder and 
Landau 1980) yields estimates of the thermal and magnetic properties for a wide range 
of values of R = J 2 / J 1 ,  and the R dependence of the critical temperature. Indications of 
non-universal behaviour along the SAF line are obtained and the values of critical 
exponents estimated for the case J1 = J 2 < 0 .  Dalton and Wood (1969) have derived 
series expansions for zero-field free energy and the ferromagnetic susceptibility. These 
series are rather short, and become irregular for R < 0, but can be used to obtain the 
variation of T,  with R for R > O .  More recently, Plischke and Oitmaa (1979) derived a 
high-temperature expansion for the susceptibility which is appropriate to the SAF 

critical line, but the irregularity of the series prevented conclusive results from being 
obtained. 

The author (Oitmaa 1980) has recently developed a high-temperature expansion 
for general king systems, and it is the aim of the present paper to apply this formalism to 
the square lattice with first and second neighbour interactions. We obtain a series of 
order 12 (in the variables u 1  = tanh K 1 ,  u2 = tanh K 2 )  for the zero-field free energy, and 
of order 11 for both the ferromagetic and SAF susceptibilities. These represent an 
addition of five terms to the series of Dalton and Wood, and an addition of two extra 
terms to the SAF susceptibility of Plischke and Oitmaa. 

In D 2 we present the series and a detailed analysis for the paramagnetic- 
ferromagnetic transition. The results confirm the expected behaviour and provide 
rather precise estimates of the critical temperature as a function of the coupling 
constants. 

In § 3 we present a similar discussion for the SAF transition. We find conclusive 
evidence that the susceptibility exponent is continuous for this transition, confirming 
the predictions of earlier authors. 

Finally in Si 4 we summarise our work and present an overall discussion. 

2. The ferromagnetic transition 

If we expand the exponential in (3) ,  with the Hamiltonian given by ( 2 ) ,  and associate the 
various terms with graphs in the standard way (see for example Domb (1974)), we can 
obtain a high-temperature expansion for the zero-field free energy. This expansion has 
the form 

-/3f(K1, K 2 ) = 1 n 2 + 2 1 n c o s h K 1 + 2 1 n c o s h K 2 + ~  umnu; lu;  (4) 
mn 
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where v1 = tanh K 1 ,  v2 = tanh K 2 .  We have computed the values of the coefficients amm 
for m + n d 12, and these are given in table 1. The order parameter appropriate to the 
ferromagnetic-paramagnetic transition is the magnetisation m = (1,”) Xi crl The cor- 
responding susceptibility, which is expected to diverge strongly along the critical line, is 

Table 1. Coefficients of high-temperature series 

( a )  Coefficients umn in the zero-field free energy expansion, equation (4). 

2 1  4 
4 1  8 
2 4  72 
2 5 188 
2 6 482 
4 5 1832  
6 4 3872  

10 1 236 
2 9 7956 
6 6 819494 

4 0  
2 3  
0 6  
8 0  
0 8  
2 7  
4 6  
8 3  

12 0 
4 8  

1 

28 
2 
4; 
4: 

1236  
6 358 
4 496 

70 548 
37: 

2 2  10 
6 0  2 
6 1  20 
6 2  132 
8 1  64 

10 0 12 
2 8 3140  
6 5 18380 

10 2 2864 
2 10 20046 

0 4  1 
4 2  34 
4 3 136 
4 4 509 
6 3 7534 
8 2 596 
0 10 12 
4 7 21448 
8 4 29369 
0 12 37f 

( b )  Coefficients cEIn in the expansion of the ferromagnetic susceptibility, equation (5). 

1 0  
0 2  
0 3  
1 3  
3 2  
6 0  
2 4  
6 1  
2 5  
7 1  
3 5  
9 0  
5 4  
1 8  
8 2  
4 6  
0 10 
8 3  
4 7  
0 11 

2 
6 

18 
336 

2 152 
370 

11 696 
8 548 

49 668 
25 584 

377 280 
6 746 

1 934 752 
147 504 

1 183 784 
11612780 

17 438 
13 666 056 
54 901 768 

44 882 

0 1  
3 0  
4 0  
0 4  
2 3  
5 1  
1 5  
5 2  
1 6  
6 2  
2 6  
8 1  
4 5  
0 9  
7 3  
3 7  

I1  0 
7 4  
3 8  

2 
18 
50 
50 

2 500 
2 784 
4 432 

31 896 
14 768 

110 720 
196 464 
74 560 

2 284 336 
6 746 

3 893 040 
7 260 320 

44 882 
37 549 248 
29 274 704 

2 0  
2 1  
3 1  
5 0  
1 4  
4 2  
0 6  
4 3  
0 7  
5 3  
1 7  
7 2  
3 6  

10 0 
6 4  
2 8  

10 1 
6 5  
2 9  

6 
68 

256 
138 

1264  
8 612 

370 
64 872 

986 
272 768 

47 376 
368 776 

1 709 400 
17 438 

8 324 824 
2 639 640 

602 284 
56 899 244 
9 140 372 

1 1  16 
1 2  80 
2 2  464 
4 1  864 
0 5  138 
3 3  13 920 
7 0  986 
3 4  76 632 
8 0  2 586 
4 4 409552 
0 8  2 586 
6 3 1058876 
2 7 735892 
9 1 213712 
5 5 12017920 
1 9 448336 
9 2 3702584  
5 6 67533752 
1 10 1335952 

( c )  Coefficients c:F in the expansion of the ordering susceptibility for the 
superantiferromagnetic transition, equation (7). 

0 1  -2 2 0  -2 0 2  6 2 1  4 
0 3 -18 4 0  2 2 2 -32 0 4  50 
4 1 -16 2 3  52 0 5 -138 6 0  -6 
4 2  4 2 4 -336 0 6 370 6 1 --28 
4 3 -408 2 5  500 0 7 -986 8 0  -6 
6 2 -400 4 4 -432 2 6 --2976 0 8 2586 
8 1 -192 6 3 -1828 4 5 -6368 2 7 4244  
0 9 -6746 10 0 -42 8 2 -1816 6 4 -12744 
4 6 -9908 2 8 -23944 0 10 17438 10 1 --852 
8 3 -16040 6 5 -54868 4 7 -80376 2 9 33460 
0 11 -44882 
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given by xF = X, ( ( ~ ~ ~ o j . )  and the high-temperature series for this quantity can be written 
as 

The values of the coefficients c,, for m + n s 1 1 are also given in table 1. For any choice 
of the ratio of interactions R = J2/I1 we can ohtain series in a single variable, which can 
then be analysed in the usual way to determine the critical coupling and exponents. We 
use the susceptibility series to estimate the value of the critical temperature. Although 
the series are sufficiently regular for ratio analysis, we have found Pad6 approximant 
methods more satisfactory. The first step is to obtain an estimate for K, = J , / k T ,  from 
poles of Pade approximants to the series for d(lg XF)/dKI. In table 2 we show estimates 
of K ,  obtained in this way for the case R = 0.5, which is typical. Having obtained an 
estimate of K,, we obtain estimates of the critical exponent y by forming Pade 
approximants to (Kc - K )  d(lg XF)/dK and evaluating these at the estimated K = K,. 
These results, which are also shown in table 1, provide strong evidence that y takes the 
universal value of 1.75. Making this assumption allows us to refine the estimate of K,, by 
looking at the poles of Pade approximants to the series for [xF]4’7. Typical results, again 
for the case R = 0.5, are shown in table 3. This procedure has been carried out for a 

Table 2. Estimates bf the ferromagnetic critical ‘temperature’ K,= J, /kTc from poles of 
[N, D ]  PA’S to the series d(lgXF(K))/dK for the case J 2  = 0.5J1.  In brackets are shown 
corresponding estimates of the exponent y from PA’S to ( K , - K )  d(lgX,(K))/dK with 
K,  = 0.2268. 

N 
D 3 4 5 6 7 

3 

4 

5 0.263 80 
(1.748 9) 

6 0.262 73 
1.749 3) 

7 0.262 81 
(1.749 2) 

0.263 31 0.262 98 0.262 87 
(1.748 6) (1.749 1) (1.749 2) 

0.263 78 0.262 71  0.262 78 
(1.758 2 )  (1.749 1) (1.749 2) 

0.263 37 0.262 78 
(1.7494) (1.749 2) 

0.262 82 
(1.749 2) 

Table 3. Estimates of the ferromagnetic critical ‘temperature’ K, = J , /kT ,  obtained from 
poles of [N, D ]  Pade approximants to the series lyJ4” for J ,  = 0.5J1. 

5 0.262 789 0.262 807 0.262 808 

6 0.262 809 0.262 808 

7 0.262 807 
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sequence of values of R in the range -0.5 < R < 00. The variation of k T , / J ,  with R is 
shown in figure 2. The figure shows the expected behaviour, but we have now obtained 
much more precise estimates of the critical temperature than had previously been 
available. For R in the range -0.5 S R < -0.4 the series are irregular and we are 
unable to conclude whether T,  goes to zero at R = -; or whether it approaches a small 
finite limit. The ferromagnetic critical line in the (IC,, K 2 )  plane is shown in figure 3. 

i 8 -1 1 
-0 5 0 0.5 1 0  1 5  

R=J21J1 

Figure 2. Quantitative variation of the ferromagnetic critical temperature versus the 
parameter R = JZ/Jlr obtained from analysis of the high-temperature susceptibility series. 
The points represent actual estimates, the error being estimated to be no larger than the size 
of the points. 

0 4  A 

I 

Figure 3. Quantitative estimates, from high-temperature susceptibility series, of the loca- 
tions of critical lines in the ( K l ,  K z )  plane. The points represent actual estimates, with errors 
estimated to be no larger than the points. 
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3. The SAF transition 

In this section we use our high-temperature series to study the critical line which 
represents the transition to the SAF state. This is the transition which occurs when 
J 2  < -0.5 J1, and is depicted as the lower line in figure l ( b ) .  It is along this line that 
non-universal behaviour has been predicted. The most appropriate series to investigate 
is that for the SAF susceptibility, xSAF. This quantity is given by 

xSAF = 1 (- 1)”~ b o a ,  ) 
I 

where xl is the horizontal distance between sites 0, j .  It is this quantity which is expected 
to exhibit a strong divergence along the SAF line, and hence to provide the most precise 
estimates of the critical temperature for this transition. The situation is similar to the 
case of the Ising antiferromagnet, where it is the staggered susceptibility which has a 
strong divergence. Our high-temperature expansion for xsAF takes the form 

x s A F =  1 + 2  1 c : ~ v ~ v I ; .  
m,n 

The values of the c,, coefficients for m +TI < 11 are given in table 1. To obtain series in 
a form suitable for analysis, we define a parameter R = -J1/Jz and for a given choice of 
R obtain series in the single variable x = -J2/kT.  For R = 0 the series is identical to the 
usual nearest-neighbour square-lattice ferromagnetic susceptibility, and thus has a 
singularity at the Onsager value x, = K O ,  with exponent YSAF = 1.75. For non-zero R 
the function xsAF should have a ‘physical singularity’xJR), but in addition will have an 
unphysical singularity on the other critical line at a negative value of x closer to the 
origin. This unphysical singularity will hinder accurate analysis unless a transformation 
is first carried out to move it further from the origin than the singularity of interest. We 
have followed the same procedure as Plischke and Oitmaa (1979), and have used an 
Euler transformation of the form 

x =x’ / ( l+Ax’ )  

where we choose A = l /xu, xu being the position of the unphysical singularity. The 
series in x ‘  is much smoother and can be analysed successfully by both ratio and Pade 
methods. To illustrate these steps we consider explicitly the case R = 0.4. In table 4(b) 
we show the results of Pad6 analysis of the x series. In this case, estimates of the 
position of the physical singularity are still fairly consistent, but the consistency is 
greatly improved by the use of an Euler transformation, as shown in table 4(d). In table 
4(e)  we show estimates of the critical exponent y obtained by forming Pade approxi- 
mants to (x L - x ’) d(lg x (x ’))/dx ’ and evaluating these at x ’ -= x :. The uncertainty of x : 
gives a corresponding uncertainty in the estimate of y ,  but the most consistent results 
are for x: = 0.1667, yielding y = 1.66 i 0.02. Another way of estimating y is to look for 
simple poles in Pad6 approximants to ~ S A F ( X  For a particular choice of y,  Padt’s 
give a spread in the positions of physical poles, as illustrated in figure 4. It is reasonable 
to take as the best estimate of y that which gives the smallest spread of xL values, and 
this gives y = 1.66 in agreement with the previous estimate. 

These techniques have been used to analyse the xSAF series for a number of R 
values. Reasonably consistent results are obtained for R =s 1.2, and the position of the 
critical line is shown in figure 3. The location of this line agrees with previous estimates 
(Nightingale 1977, Swendsen and Krinsky 1979) within the resolution of figure 3. On a 
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Table 4. Analysis of the ,ysAF series for the case R = 0.4. 

( a )  Coefficients of the series in the variable x. 1, 4, 11.36, 33.386 666 67, 81.930 666 67, 
225.275 7333, 511.726 5465, 1417.041 650, 2981.887 343, 1592.231 129, 
16 445.533 46, 51 592.256 15. 
( b )  Estimates of physical singularity x, and unphysical singularity x,, (in brackets) from 
[N,  D ]  Pad6 approximants to d(lgXsAF(x))/dx. An asterisk denotes no consistent estimate, 
(cc) denotes complex-conjugate pair near axis. 

4 5 6 7 

3 

4 

0.4399 0.4494 0.4459 
(cc) (--0,3011) (-0.2907) 

0.4385 0.4420 0.4470 
(-0.2423) (-0.2651) (-0.288 8) 

5 0.4407 0.4450 0.4447 
(cc) (cc) (cc) 

6 0.4413 0.4447 
(-0.2426) (cc) 

7 0.4474 
(-0.2826) 

(c) Cofficients of the series in variable x' ,  obtained using the Euler transformation 

1,4,26.36, 174.836 6667, 1147.718 167,7458.501 358,48 062.127 02,307 565.9509, 
1956951.020, 12 391 920.24, 78 150965.49, 491 153 963.0. 
( d )  Estimates of position of singularity x l  from [ N , D ]  Pad6 approximants to 

x '  = x/(l  + 3.75x). 

d(lg XS,& '))lh '. 

N 
D 3 4 5 6 7 

3 0.1662 0.1665 0.1666 

4 0.1661 0.1681 0.1667 

5 0.1661 0.1665 0.1667 

6 0.1660 0.1667 

7 0.1702 
~~ ~~~~~ 

Estimate x:. = 0.1667*0.0003 gives x,= 0.445*0.002. 
( e )  Estimates of critical exponent y from [N,D] Pad6 approximants to ( x l  - x ' )  
d(lg~,,,(x'))/dx'evaIuated at x '=xL ,  for three choices of x:. 

0.1666 0.1667 0.1668 

[3,71 1.6435 1.6590 1.6751 
[4,61 1.6438 1.6593 1.6754 
[5,51 1.6441 1.6593 1.6757 
[6,4l  1.6438 1.6593 1.675 1 
[7.31 1.6444 1.6594 1.6753 
[3> 61 1.6487 1.6650 1.6817 
[4,51 1.6447 1.6594 1.6743 
~ 4 1  1.6446 1.6592 1.6740 
[6, 31 1.6450 1.6596 1.6743 
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Figure4. Scatter diagram showing the location of physical poles in high-order Pade 
approximants to hSAF]1’7 for different choices of y ,  as explained in the text. The shaded 
region, being the region occupied by poles, is clearly narrowest for y = 1.66. 

larger scale there is a small discrepancy between our estimates of x, and the 
parametrised result of Swendsen and Krinsky. This is illustrated in figure 5 ,  as are the 
estimates of the critical exponent y. The series results for y show clear evidence for a 
continuous variation and consequent breakdown of universality. There is again a small 
disagreement between the series estimates and the earlier Monte Carlo results. The 
error bars on the series results represent the sort of confidence limits which would have 
been assumed in the absence of the Monte Carlo results. It may well be that one or both 
sets of error estimates are too optimistic, and further work will be needed to clarify this. 

0.48- 

R R 

Figure 5. Variation of the critical coupling-K2, and the exponent ysaF of the ordering 
susceptibility for the SAF transition, as functions of R = -J,/J2. For comparison, the Monte 
Carlo renormalisation-group results of Swendsen and Krinsky (1979) are also shown (as 
broken lines) and the Monte Carlo results of Binder and Landau (1980) (as crosses). 

4. Conclusions 

The work reported in this paper has provided, in our view, the most precise information 
currently available on the critical behaviour of the square-lattice Ising model with 
nearest and next-nearest neighbour interactions. In particular, the location of the 
critical lines has been accurately determined, and this information may be useful in 
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interpreting data on suitable experimental systems. Although we have concentrated on 
the critical behaviour, it would be relatively straightforward to use the series to estimate 
the magnitude of the susceptibility or specific heat over the whole temperature region 
T 3 T,. 

The greatest theoretical interest in this model is in the critical line corresponding to 
transitions to the SAF state. We have confirmed previous predictions of a continuous 
non-universal variation of the susceptibility exponent along this line. It has been 
suggested that along this line the model is in the same universality class as the 
eight-vertex model. If this is the case, then there should be an explicit mapping between 
these two models, and it may be possible to discover this by a closer study of the data 
shown in figure 5. 

Another point which requires further study is the behaviour of this model when 
- -J1, since in this case the ground state is highly degenerate. Our results tend to 

suggest that T,  = 0 for this ratio of interactions, but a finite transition temperature 
corresponding to a bicritical point cannot be ruled out. Further study, possibly with the 
aid of low-temperature series, may be able to clarify this question, and it is hoped to 
investigate this point in future work. 

J -  1 
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